A common assumption of many established models for decision making is that information is searched according to some pre-specified search rule. While the content of the information influences the termination of search, usually specified as a stopping rule, the direction of search is viewed as being independent of the valence of the retrieved information. We propose an extension to the parallel constraint satisfaction network model (iCodes: integrated coherence-based decision and search), which assumes—in contrast to pre-specified search rules—that the valence of available information influences search of concealed information. Specifically, the model predicts an attraction search effect in that information search is directed towards the more attractive alternative given the available information. In three studies with participants choosing between two options based on partially revealed probabilistic information, the attraction search effect was consistently observed for environments with varying costs for information search although the magnitude of the effect decreased with decreasing monetary search costs. We also find the effect in reanalyses of five published studies. With iCodes, we propose a fully specified formal model and discuss implications for theory development within competing modeling frameworks.
Jekel, M., Glöckner, A., & Bröder, A.
Psychological Review, 125, 744–768,
2018
Whereas classic work in judgment and decision making has focused on the deviation of intuition from rationality, more recent research has focused on the performance of intuition in real-world environments. Borrowing from both approaches, we investigate to which extent competing models of intuitive probabilistic decision making overlap with choices according to the axioms of probability theory and how accurate those models can be expected to perform in real-world environments. Specifically, we assessed to which extent heuristics, models implementing weighted additive information integration (WADD), and the parallel constraint satisfaction (PCS) network model approximate the Bayesian solution and how often they lead to correct decisions in a probabilistic decision task. PCS and WADD outperform simple heuristics on both criteria with an approximation of 88.8% and a performance of 73.7%. Results are discussed in the light of selection of intuitive processes by reinforcement learning.
Jekel, M., Glöckner, A., Fiedler, S., & Bröder, A.
Synthese, 198, 147–160,
2012
One major statistical and methodological challenge in Judgment and Decision Making research is the reliable identification of individual decision strategies by selection of diagnostic tasks, that is, tasks for which predictions of the strategies differ sufficiently. The more strategies are considered, and the larger the number of dependent measures simultaneously taken into account in strategy classification (e.g., choices, decision time, confidence ratings; Glöckner, 2009), the more complex the selection of the most diagnostic tasks becomes. We suggest the Euclidian Diagnostic Task Selection (EDTS) method as a standardized solution for the problem. According to EDTS, experimental tasks are selected that maximize the average difference between strategy predictions for any multidimensional prediction space. In a comprehensive model recovery simulation, we evaluate and quantify the influence of diagnostic task selection on identification rates in strategy classification. Strategy classification with EDTS shows superior performance in comparison to less diagnostic task selection algorithms such as representative sampling. The advantage of EDTS is particularly large if only few dependent measures are considered. We also provide an easy-to-use function in the free software package R that allows generating predictions for the most commonly considered strategies for a specified set of tasks and evaluating the diagnosticity of those tasks via EDTS; thus, to apply EDTS, no prior programming knowledge is necessary.
Jekel, M., Fiedler, S., & Glöckner, A.
Judgment and Decision Making, 6, 782–799,
2011